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Abstract
A model of a polarized mixture is developed and the effects of migration of
ions are also accounted for. The rate of the polarization power in some way
furnishes power to the mixture. The electrical external power is calculated and
by means of a requirement of invariance of the power, the standard balance
laws are deduced. The ions dissolved in the mixture and subject to the electric
field are considered like tracers and their migration is discussed. We show that
their migration is ruled by the Nernst–Planck equation. In the final section,
we adapt the description of the model to the setting of complex bodies and the
microstructural evolution equations are derived.

PACS numbers: 47.61.−k, 82.70.−y

1. Introduction

Roubicek [1] proposed in his paper a model of a mixture of ionic constituents; his model
combines the Navier–Stokes equation with the Nernst–Planck equation (with a convective
term in the flux) and finally the Poisson equation for the self-induced quasistatic electric
field; Roubicek intended his continuum as a charged not a polarized mixture. In our point
of view a continuum immersed in an electric field changes its behaviour in a polarized
continuum. Moreover, the flux of ions should be studied not like a phase but, according to
[2], like tracers carried by a mixture of different fluids; examples of tracers are the salts or the
pollutants dissolved in water. In the following, we distinguish between phases and tracers;
furthermore, we suppose that the phases of the mixture are non-reacting, to avoid carrying
along cumbersome quantities which add very little to the understanding of the problem and
to its mathematical approach. The problem of reacting mixtures has been widely discussed
in [3, 4] and all those results can be easily integrated in the framework that we propose. For
the sake of simplicity we suppose that the mixture is composed of N phases and that each
phase carries only one tracer. This assumption will allow us to apply the principle of phase
separation in the Coleman and Noll procedure [5]. However, the same arguments can be used
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in a mixture with N phases and Z tracers using the principle of equipresence. Differently from
the phases of the mixture, we consider the tracers (ions) as reactants and we suppose that their
concentration is described by the equation

∂ca

∂t
+ div ja = c̆a, (1)

with a = 1, . . . , N. We make no assumption regarding the flux ja: its nature will be discussed
in section 5. This paper is structured as follows: in section 2, we present a summary of
the theory of mixtures and introduce the notation. In section 3, we derive a relationship
which allows us to account for the power of polarization of a continuum; such a relationship
corresponds to a similar one derived by Tiersten [6] for a magnetizable continuum. In section 4,
we derive all the balance laws for each phase and for the mixture as a whole. The mathematical
tool that we will use is the requirement of the invariance of the external power for observers,
introduced by Mariano [7]. In section 5, we use the Coleman and Noll procedure for finding the
constitutive restrictions. In such a way we derive that the flux of the ionic tracers is governed
by the Nernst– Planck equation. In section 6, we describe the same mixture in the setting of
complex bodies; the microstructural balances are derived to provide a better representation of
the problem. We summarize here some standard notations used in the paper; we denote by
small bold letters the vectors and by capital bold letters the tensors. Only the electrical vector
E and the electrical displacement D (or respectively Ea and Da when dealing with the ath
phase) do not follow our convention, in respect of the classical notation in electrodynamics.
We denote by the symbol ‘·’ the full contraction; when we deal with vectors the symbol ‘·’
indicates the standard scalar product; when we deal with tensors it contracts all the indices.
Let A and B be two second-order tensors, then A · B = AijBij . The product of two tensors
contracts only one index; then AB = AihBhj ; similarly for the product of a tensor and a vector
(in such a case we write Ab = Aijbj ).

2. Theory of mixtures

We present first a summary of results for the theory of mixtures [3] and we specialize such
results for our framework. We consider a mixture of N bodies Ba = 1, . . . , N. Each constituent
is assigned a fixed reference configuration with Xa the position of a particle of that constituent
in its reference configuration. Then the motion

x = χa(Xa, t)

gives the spatial position x occupied at time t by the particle labelled Xa. We assume χa to be
sufficiently smooth and define

x́a = ∂tχa(Xa, t)

x̋a = ∂2
t χa(Xa, t)

to be velocity and acceleration of the ath constituent. Moreover, with the usual definitions we
write the deformation gradient

Fa = ∇χa(Xa, t)

supposed invertible, and we obtain the velocity gradient

grad x́a = F́aF−1
a .

Mass density ρa is assigned to each phase; the total mass density of the mixture is defined as

ρ =
∑

a

ρa, (2)
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the mean (or barycentric) velocity is given by

ẋ = ẋ(x,t) = 1

ρ

∑
a

ρa x́a (3)

and the diffusion velocity is defined as

ua = ua(x,t) = x́a − ẋ. (4)

Consequently we have x́a = ẋ + ua and
∑

a ρaua = 0. We consider now a quantity �; no
importance is attached to its nature (scalar or vectorial or other); in considering the presence of
more phases, it is important to know the material derivative of � following the ath constituent.
It is given by

�́a = ∂t� (x, t) + grad � · x́a (5)

and the material time derivative following the motion of x is

�̇ = ∂t� (x, t) + grad � · ẋ. (6)

By subtracting (6) from (5) we also obtain

�́a − �̇ = grad � · ua. (7)

In general, the balance of the ath mass constituent is

ρ́a + ρa div x́a = r̆a,

for a chemical reacting mixture the rate of a generic quantity �a is given by

d

dt
(ρa�a) = ρa�́a + r̆a�a,

from now on, it is assumed that the mixture is chemically nonreacting and thus r̆a ≡ 0 is
assumed. Other useful identities proposed by [3, 8] for r̆a = 0 are

ρ�̇ =
∑

a

[ρa�́a − div(ρa�aua)], (8)

ρaua · úa = ρaua · x̋a − ρaua ⊗ ua · grad ẋ. (9)

In the following, we will use such identities to find out the balances for a single phase and for
the mixture as a whole. The following principles which describe the interactions among each
phase and the behaviour of the mixture as a whole are of great help in finding the balances.
We quote three metaphysical principles introduced by Truesdell [8] (for shortness MP):

(i) All properties of the mixture must be a mathematical consequence of properties of the
constituents.

(ii) So as to describe the motion of a constituent, we may in imagination isolate it from the
rest of the mixture, provided we allow properly for the actions of the other constituents
upon it.

(iii) The motion of a mixture is governed by the same equations as is a single body.

The first principle asserts that a whole is the sum of its parts, and the third one asserts
that during its motion the body does not know if it is a mixture or not. The second can be
interpreted as an action–reaction principle.

3
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3. Electrodynamics of mixtures

We consider an electric dipole immersed in the electric field Ea of the phase ath; in the
following, we define with Ea the self-induced phase electric field; we define with E = ∑

a Ea

the total electric field and we call E0 the external electric field. Moreover, we call d the
oriented distance of the positive charge from the negative one and q is the generic electric
charge. The electric energy of the ath phase is given by the sum of the energy U−

a of the
negative charge with the energy U+

a of the positive charge. Namely, if we call φa the electric
potential of the phase ath, we call φ0 the external electric potential and φ = ∑

a φa , we write

Ua = U−
a + U+

a = −qφa(r) + qφa(r + d),

and, expanding in Taylor series the latest term in the previous equality, the following equation
arises

Ua = −qφa(r) + qφa(r) + q grad φad

= q d grad φa. (10)

We introduce the polarization vector pa of the phase ath as the product

pa = q d,

and recalling that Ea = grad φa the electric energy (10) changes into

Ua = −Ea · pa. (11)

In general, we can calculate the mechanical work that the electric field does on the dipole. We
imagine that the charges constitute a rigid system and then the work has two contributions:
one is due to a force fa , that is conjugated in the sense of the work with the displacement dl,
and the other is due to a couple ma , that is conjugated in the sense of the work with the rotation
dς . In general, we write

dL = fa · dl + ma · dς = −dU,

and we find from (11) that

fa = −∂Ua

∂l
= (grad Ea) pa, (12)

similarly, we find the couple ma in the scalar form

ma = −∂Ua

∂ς
= − ∂

∂ς
(Eapa cos ς) = Eapa sin ς, (13)

which in vectorial notation writes

ma = pa × Ea. (14)

We calculate now the power developed by that couple; since we supposed that d remains
constant in modulus we can calculate the time derivative ḋ by the Poisson formula

ḋ = ω × d, (15)

where ω is the angular velocity. The three vectors in (15) are orthogonal to each other and we
can use such a property to find ω. We can write in modulus

ḋ = ωd

and by the previous equation, considering that ω, d and ḋ are mutually orthogonal, the modulus
of the angular velocity is deduced in the vectorial form

ω = 1

d2
d × ḋ.
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We can extend these results to a generic ath phase and calculate the power that the force
(12) and the couple (13) develop. The contribution of force to the power is simply

fa · x́a = (grad Ea) pa · x́a,

while the contribution of the couple to the power is

ma · ω = 1

d2
(pa × Ea) · (da × d́a) = 1

d2
εijkpaj

Eak
εilmdal

d́am

= 1

d2
(δjlδkm − δjmδkl)

1

d2
(paj

Eak
dal

d́am
) = 1

d2
paj

daj
Eak

d́ak
, (16)

with εijk being Ricci’s permutation tensor. Equation (16) in vectorial formalism writes

ma · ω = 1

d2
a

(qdajdajEakd́ak) = qEakd́ak = Ea · ṕa.

Moreover we want to introduce the electric displacement Da = ε0 Ea + pa , with ε0 being the
vacuum permittivity. The electric displacement fulfils the requirement div Da = 0. We can
make now some observation about the electrical force fa; if we deal with one phase only, we
can consider the electric field Ea as the sum of the contribution of an external electric field E0

and an electric part acting only inside the body that we call Ēa , such that Ea = E0 + Ēa . In
that way, the electric force writes

fa = (grad Ēa) pa + (grad E0) pa (17)

and introducing the Maxwell stress tensor Tms
a [9] as

Tms
a = ε0 Ēa ⊗ Da − 1

2ε0 Ēa · Ēa I,

we write (17) as

fa = div Tms
a + (grad E0) pa. (18)

Hence, as a consequence of the hypothesis that we have only one phase, follows that we can
write the external electrical power P el

a for a generic part bt of the body at time t in the form

P el
a =

∫
bt

Tms
a n · x́a+

∫
bt

ρa(grad E0) pa · x́a+
∫

bt

ρa Ea · ṕa (19)

as proposed in [13]. In (19) we have considered the polarization vector as a polarization vector
per unit of mass; in this way, the polarization vector will be considered from now on. Such form
of the external power is appropriate when we describe a polarized material or a ferroelectric
material (that has one phase only) but is not appropriate in the electrodynamic theory of the
mixture because to deduce (19) we assumed that we can separate the external electric field
from the unique phase we were considering, but we cannot count such contribution as times
as the phases are. Hence we should write the external electrical power P el

a as

P el
a =

∫
bt

ρa(grad Ea) pa · x́a +
∫

bt

ρa Ea · ṕa. (20)

Balance equations are derived by following a procedure based on the requirement that the
power of all external actions over a generic part of the body is invariant under changes in
observers differing from one another by rigid-body motions. In general, we may define an
observer like a representation of events. In the standard context, we only need the interval of
time and a representation of the ambient space to describe the motion of the body. Let O and
O∗ be two synchronous observers in R

3. If the transformation O → O∗ is isometric and time
dependent, then a generic x in O changes in

(x∗−x0) := w(t) + Q(t)(x − x0)
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where w(t) and Q(t) are, respectively, an arbitrary vector and an orthogonal tensor at time t.
Then the velocities of the ath phase recorded by the two observers are related by

x́∗
a = c(t) + q(t) × (x − x0) (21)

where c(t) is the translational velocity of O∗ with respect to O and q(t) is the angular velocity
of O∗ with respect to O and related to Q(t) by

QT (t)Q̇(t) = q(t) × .

Similarly, the rate of the polarization vector pa (per unit of mass) of the ath phase with respect
to observer O∗ is given by

ṕ∗
a= q(t)×pa. (22)

Equations (21) and (22) will be applied to exploit the axiom of invariance of the power [7, 11].
As pointed out by Truesdell, it is possible to consider separately each constituent from the
others, provided that we account for the action on the constituent itself provided by the other
constituents. For this reason, we decompose the power of the ath component into a proper
part P

prop
a (x́a), the one that can be attributed to bt as if it was isolated, and an exchange part

P exch
a (x́a) which accounts for the power of actions exerted on the first constituent. Note that

although the two constituents occupy the same region in space, each constituent is a body
different from the other, according to the classical theory of mixtures by Truesdell [8]. We
write the external power for the ath phase as

P ext
a (x́a, ṕa, bt ) = P prop

a (x́a, ṕa, bt ) + P exch
a (x́a, bt ), (23)

where P
prop
a includes both mechanical and electrical force (as introduced in (20); it can be

exploited as

P prop
a (x́a, ṕa, bt ) =

∫
∂bt

Tan · x́a +
∫

bt

ba · x́a +
∫

bt

ρa(grad Ea) pa · x́a +
∫

bt

ρa Ea · ṕa,

where ba is the bulk force for the ath phase and Ta is the classical Cauchy stress tensor
for classical continuum. In (23) we have also introduced the power exchanged between the
phases; it writes

P exch
a =

∫
bt

m̆a · x́a +
∫

bt

ω̆a · rot x́a

which has been proposed by Mariano in [7]. Therefore, we can write (23) as

P ext
a (x́a, ṕa, bt ) =

∫
∂bt

Ta n · x́a +
∫

bt

ba · x́a +
∫

bt

m̆a · x́a

+
∫

bt

ω̆a · rot x́a +
∫

bt

ρa(grad Ea) pa · x́a +
∫

bt

ρa Ea · ṕa (24)

that coincides with the form of the external power proposed by Mariano [7] for simple bodies
when pa is identically null. The external power P ext

a for the phase is such that the rule of total
power [7] applies. It writes

P ext(ẋ, ṗ) =
∑

a

P ext
a (ẋ, ṗa). (25)

We apply the axiom of invariance for the power to obtain the balance laws: we impose that

P ext
a (x́a, ṕa, bt ) = P ext

a (x́∗
a, ṕ∗

a, bt ), (26)

6
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therefore, substituting (21), (22) and (24) into (26) we obtain

c(t) ·
[∫

∂bt

Tan +
∫

bt

ba +
∫

bt

m̆a +
∫

bt

ρa(grad Ea) pa

]

+ q (t) ·
[∫

∂bt

(xa − x0) × Ta n +
∫

bt

(xa − x0) × ba +
∫

bt

(xa − x0) × m̆a

+
∫

bt

(xa − x0) × ρa(grad Ea) pa +
∫

bt

pa × ρaEa +
∫

bt

ω̆a

]
= 0. (27)

Equation (27) has to be verified for every choice of c(t); then the local form of linear momentum
balance arises

div Ta + ba + m̆a + ρa(grad Ea) pa = 0. (28)

Equation (27) has to be also verified for every choice of q (t). Hence, in indicial notation∫
∂bt

εijk(xa − x0)jTakl
nl +

∫
bt

εijk(xa − x0)j bak

+
∫

bt

εijk(xa − x0)j m̆ak
+

∫
bt

εijkpaj
ρaEak

+
∫

bt

ω̆aj
= 0. (29)

Applying the divergence theorem and equation (28) we have

εijkTakj
+ εijkρapaj

Eak
= −ω̆aj

(30)

or, in symbolic notation

ε
(
TT

a + ρa pa ⊗ Ea

) = −ω̆a. (31)

When ω̆a = 0, equation (31) coincides with the momentum balance found in [12]. We find
now the balance equations for the whole mixture by applying the third metaphysical principle.

We explicitly write, now, the external power P ext (ẋ, ṗ,bt ) of the mixture as a whole

P ext(ẋ, ṗ) =
∫

∂bt

Tn · ẋ +
∫

bt

b · ẋ +
∫

bt

ρ(grad E) p · ẋ +
∫

bt

ρ E · ṗ, (32)

with p being the polarization vector (per unit of mass) for the mixture as a whole. We can
estimate how every single quantity of each constituent acts on the quantities of the mixture
applying the invariance of observers to (25). We obtain

c(t) ·
[∫

∂bt

Tn +
∫

bt

b +
∫

bt

ρ(grad E)p

]
+ q (t) ·

[∫
∂bt

(x − x0) × Tn+
∫

bt

(x − x0) × b

+
∫

bt

(x − x0) × ρ(grad E) p +
∫

bt

p × ρE
]

= c (t) ·
∑

a

[∫
∂bt

Tan +
∫

bt

ba +
∫

bt

m̆a +
∫

bt

ρa(grad Ea) pa

]

+ q (t) ·
∑

a

[∫
∂bt

(x − x0) × Tan +
∫

bt

(x − x0) × ba

+
∫

bt

(x − x0) × m̆a

∫
bt

(x − x0) × ρa(grad Ea) pa +
∫

bt

pa × ρaEa +
∫

bt

ω̆a

]
.

The above equality is verified if

b =
∑

a

ba, T =
∑

a

Ta, (33)

7
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∑
a

m̆a = 0,
∑

a

ω̆a = 0, (34)

ρp =
∑

a

ρapa, ρ(grad E) p =
∑

a

ρa(grad Ea) pa. (35)

Equations (34)1 and (34)2 mean that the exchange of momentum and the exchange of moment
for the whole mixture due to interactions between constituents are pointwise self-equilibrated,
as prescribed by the second MP. We can write now the balance laws for the mixture as a whole
recalling that

div Ta + ba + m̆a + ρa(grad Ea) pa = 0. (36)

In general, we can decompose bulk force of ath phase in its inertial and non-inertial parts (see
[11, 13, 14]) as

ba = bin
a + bni

a . (37)

We define the inertial part as the derivative of momentum (or, in a different way, we can say
that the inertial part multiplied by velocity is the derivative of the kinetic energy changed in
sign). Hence

bin
a = − d

dt
(ρa x́a) = −ρa x̋a, (38)

and now we can rewrite equation (36) as

div Ta + bni
a + m̆a + ρa(grad Ea) pa = ρa x̋a.

We sum over a and recalling equation (8) with �a ≡ x́a , and equation (35), it follows that

div

(
T−

∑
a

ρaua ⊗ ua

)
+ bni + ρ(grad E) p = ρẍ, (39)

where T = ∑
a Ta is the inner part of the stress tensor and the term

∑
a(ρaua ⊗ ua) accounts

for diffusion between phases. In the classical theory of mixtures T is symmetric; in our case
it is not. Indeed, by summing equation (31) over a and taking into account (34)2, we have

ε(TT+ρp ⊗ E) = 0.

We define the inner part of the internal energy the weighted sum of all internal energies

ρeI =
∑

a

ρaea. (40)

This energy accounts only for the presence of the internal energies of every phase, but does
not account for the exchanges of energy and diffusion between phases. By taking equation (8)
with �a ≡ ea we can write∑

a

ρaéa = ρėI + div

( ∑
a

ρaeaua

)
. (41)

To account for the diffusion and exchanges between phases we define the internal energy as
[15]

e = eI +
∑

a

1

2
u2

a.

We recall from equation (8), with �a ≡ 1
2ρau

2
a , that

ρ
∑

a

1

2

.

cau2
a =

∑
a

[
ρauaúa − div

(
1

2
ρau

2
aua

)]
. (42)

8
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Such a relationship will be useful in the following. We write the energy balance in the form

d

dt

∫
bt

ρaea = P ext
a +

∫
∂bt

qa · n +
∫

bt

(ρara + Ĕa), (43)

where the vector qa represents heat flux through the border ∂bt , ρara is the source of internal
heat and Ĕa is the exchange of energy between the phases as postulated in the third MP.
Mechanical, electrical and exchange effects are included in P ext

a , as defined in equation (24).
In the definition of Ĕa we consider uniquely those terms accounting for the exchange of energy
between the phases; we assume the form [3]

Ĕa = ĕa − ω̆a · rot x́a. (44)

If we substitute equation (44) into (43) taking the time derivative at the left-hand side, the
resulting pointwise balance is

ρaéa = Ta · grad x́a + div qa + ρara + ρaEa · ṕa + ĕa. (45)

We try to manipulate equation (43) in order to find the energy balance law for the mixture as
a whole. Since (4), (24) and (44) we can express (43) as∫

bt

ρaéa =
∫

∂bt

Tan · ẋ +
∫

∂bt

TT
a ua · n +

∫
bt

ρa(grad Ea) pa

+
∫

bt

ba · ẋ +
∫

bt

ba · ua +
∫

bt

m̆a · ẋ +
∫

bt

m̆a · ua

+
∫

∂bt

qa +
∫

bt

ρara +
∫

bt

ρaEa · ṕa +
∫

bt

ĕa (46)

and by equation (36) we get the pointwise balance

ρaéa = Ta · grad ẋ + div
(
qa + TT

a ua

)
+ (ρara + ba · ua

+ ρa(grad Ea) pa · ua) + ρaEa · ṕa + (ĕa + m̆a · ua). (47)

We sum up equation (47) over a, and by taking into account equation (41), we obtain the
global balance of the inner part of the internal energy

ρėI = T · grad ẋ + div qI + ρrI +
∑

a

[ba · ua + ρa(grad Ea) pa · ua] + ρE · ṗ

+
∑

a

div(ρapa ⊗ ua) ·
∑

a

Ea +
∑

a

(ĕa + m̆a · ua) , (48)

where qI = ∑
a

(
qa +TT

a ua −ρaeaua

)
and ρrI = ∑

a ρara . In (48), equation (8) with �a ≡ pa

has been used. The sum
∑

a ba · ua contains both inertial and non-inertial terms. The addition
between equations (42) and (48) provides the rate of total internal energy

ρė =
(

T−
∑

a

ρaua ⊗ ua

)
·grad ẋ + div q̃ + ρr̃ + ρE · ṗ +

∑
a

(ĕa + m̆a · ua) . (49)

We impose that∑
a

(ĕα + m̆α · uα) = 0 (50)

and the balance (49) transforms into

ρė =
(

T−
∑

a

ρaua ⊗ ua

)
· grad ẋ + ρE · ṗ + div q̃ + ρr̃, (51)

9
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where

q̃ =
∑

a

(
qa + TT

a ua − ρaeaua − 1

2
ρau

2
aua

)

= qI −
∑

a

1

2
ρau

2
aua, (52)

ρr̃ = ρrI +
∑

a

[(
bni

a + ρa(grad Ea) pa

) · ua

]
+

∑
a

div(ρapa ⊗ ua) ·
∑

a

Ea. (53)

We have written equation (50) for consistency. Such a result is equal to that found by
Bowen [3] for the classical theory of mixtures when the sources of mass are neglected and
equation (49) coincides with the energy balance proposed by Eringen [12] for a single phase
when microstretch effects are absent; equations (50) and (51)–(53) are the form that the first
principle of thermodynamics assumes for a polarized mixture as a whole.

4. Constitutive restrictions

For exploiting the constitutive restrictions of the mixture we should introduce the entropy
unbalance and the Helmholtz free energy ψa for the ath phase and apply the Coleman and
Noll procedure [5]. The entropy inequality for the phase a is

ρaήa � div ha +
ρara

θ
. (54)

We introduce now the Helmholtz free energy for the phase a as ψ t
a = ea − θηa. We suppose

that all the constituents have the same temperature θ ; multiplying equation (54) by θ and
subtracting the result to equation (45) we obtain

ρaψ́
t
a + ρaηaθ́ � Ta · grad x́a + ρaṕa · Ea +

qa

θ
· grad θ + ĕa, (55)

where we make the assumption that qa = θ ha for consistency. The energy balance (45) and
(55) contain no terms accounting for the migration of ions; then the energy ψ t

a accounts only
for the thermoelastic contribution of the free energy and accounts in no way for the migration
of the ions. Then we should consider the global Helmholtz free energy as the sum of the terms
ψa = ψ t

a + ψm
a , where ψm

a is the migrative part of the ions that we propose in the form∫
bt

ρaψ́
m
a = −

∫
∂bt

μ̃a ja +
∫

bt

c̆aμ̃a, (56)

the term μ̃a is a thermodynamic function power conjugated with the variation of mass; its
nature will be explained in the following. Such a balance can be written in the pointwise form
as

ρaψ́
m
a = −ja · grad μ̃a + μ̃aća, (57)

where the balance (1) has been used. By summing equation (55) and (57) we get, from the
definition of ψa , the inequality

ρaψ́a + ρaηaθ́ � Ta · grad x́a + ρaṕa · Ea +
qa

θ
· grad θ + ĕa − ja · grad μ̃a + μ̃aća (58)

that coincides with the entropic inequality that Mariano proposed in [16, 17] to account for
migrative effects using a different explanation. We apply the principle of phase separation to

10
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exploit the constitutive restrictions; we propose for the Helmholtz free energy ψa , the stress
tensor Ta , the flux qa and the thermodynamic potential μ̃a the dependences

(ψa, Ta, qa, μ̃a) = F(θ, grad θ, ua, Fa, ca, pa, ṕa, grad pa), (59a)

while for the term m̆a which accounts for interactions of ath constituent with the other
constituents we propose

m̆a = G(θ, grad θ, ub, Fb, cb, pb, ṕb, grad pb). (59b)

We sum equation (58) for all the phases, and applying equation (50) we get∑
a

[
ρa(ψ́a + θ́ηa) � Ta · grad x́a + ρaṕa · Ea +

qa

θ
· grad θ − m̆a · ua

]
. (60)

We define now, for simplicity of notation, the quantities

wa := grad pa and g := grad θ.

Bearing in mind equation (59a) and applying the chain rule, the derivative of the free energy
is

ψ́a = ∂ψa

∂Fa

· F́a +
∂ψa

∂θ
· θ́a +

∂ψα

∂g
· ǵa +

∂ψa

∂pa

· ṕa

+
∂ψa

∂wa

· ẃa +
∂ψa

∂ṕa

· p̋a +
∂ψa

∂ua

· úa +
∂ψa

∂ca

· ća. (61)

By recalling that grad x́a = F́aF−1
a and grad (∗)

/ = grad (∗)/ +grad (∗) (grad x́a), we substitute
(61) into (60) and we have
∑

a

[(
ρa

∂ψa

∂Fa

+ ρawT
a

∂ψa

∂wa

− Ta · F−T
a

)
· F́a + ρa

(
∂ψa

∂θ
+ ηa

)
· θ́a

+ ρa

∂ψa

∂g
· ǵa + ρa

∂ψa

∂ua

· úa +

(
ρa

∂ψa

∂ca

− μ̃a

)
· ća − qa

θ
· ∇θ + m̆a · ua

+ ja · grad μ̃a + ρa

(
∂ψa

∂pa

− Ea

)
· ṕa + ρa

∂ψa

∂wa

· ẃa + ρa

∂ψa

∂ṕa

· p̋a

]
� 0. (62)

This inequality should be verified for every choice of the motion

(F́a, θ́a, grad θ́a, ṕa, grad ṕa, p̋a, úa).

Necessary and sufficient conditions are

ρa

(
∂ψα

∂Fa

+ wT
a

∂ψa

∂wa

)
FT

a = Ta,
∂ψa

∂θ
= −ηa, ρa

∂ψa

∂ua

= 0,

ρa

∂ψa

∂ṕa

= 0,
∂ψa

∂∇θ
= 0, ρa

∂ψa

∂ca

= μ̃a,

(63a)

ρa

∂ψa

∂wa

· ẃa = 0; ∂ψa

∂pa

= Ea; (63b)

the first equality in equation (63b) does not mean, trivially, that ∂ψa

∂wa
is identically null, but that

it is orthogonal to ẃa . Equation (62) reduces to the residual inequality∑
a

{
−qa

θ
· grad θ + m̆a · ua + ja · grad μ̃a

}
� 0. (64)

Inequality (64) is verified if all terms occurring are less or equal to zero. The term
− qa

θ
· grad θ � 0 if qa = ka grad θ with ka being a definite positive coefficient.

11
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A possible solution for m̆a · ua � 0 could be

m̆a = Ma(θ, grad θ, ub, Fb, cb) ua

with Ma (θ, grad θ, ub, Fb, cb) being a definite-negative second-order tensor. The third term
is negative if and only if we admit the constitutive restriction

ja = ca Ba grad μ̃a (65)

with Ba being a negative mobility tensor. We know from the irreversible thermodynamics that
the flux ja has the form ja = ca Ba F̃a then by comparison we should admit that F̃a = grad μ̃a

and this relation clarifies the nature of the thermodynamic function μ̃a: it is a thermodynamic
potential and since F̃a has a dual nature, mechanical and electrical, the same should happen
for the thermodynamic potential μ̃a that we decompose in the form

μ̃a = μa + zaFφa, (66)

where μa is the standard state chemical potential for the ath component, za is the valence of
the ion in the ath phase and F is the Faraday constant. Moreover, we suppose that the chemical
potential μa has the form

μa = μ0
a + R θ lnγaca,

where μ0
a is the chemical potential at the standard state, γa is the activity coefficient and R is

the universal constant of gas. From all this consideration descend that (65) changes into

ja = caBa grad μa + cazaFBa grad φa

= caBaR θ

(
grad lnγa +

1

ca

grad ca

)
+ zaF Ba grad φa.

In a dilute mixture the activity coefficient becomes constant and thus the flux ja becomes

ja = Da

(
grad ca +

zaF

Rθ
grad φa

)
, (67)

where we have grouped the terms Da = R θ Ba . We can recognize the flux occurring in
(67) as the flux occurring in Nernst–Planck equation; then equation (1) is the Nernst–Planck
equation. Roubicek [18] achieved the same results about the Nernst–Planck flux doing different
considerations: he proposed first (67) as the simplest model for drift and diffusion in fluxes;
moreover, by proposing an electrochemical potential equal to (66) he can generalize his flux
arriving to a formulation of the forces causing the fluxes equal to (65); by these considerations
Roubicek avoided all the technicism in the Coleman and Noll procedure. Moreover, Roubicek
deduced the sign of the mobility tensor via an Onsanger approach instead of using the entropy
inequality (64) deduced via the Coleman and Noll procedure. Other particular cases of
constitutive restrictions for the fluxes are discussed in [18].

The electric potential φa can be determined solving the Maxwell’s equation

ε0 div(ε grad φa) = Qa,

where the term in the left-hand side is the total electric charge of the ath constituent.

5. Microstructured mixtures

We study now an enriched representation of the mixture by supposing it as a microstructured
continuum. In the past decades (see [4] and related references), an effort has been made
to develop a continuum theory in the theory of mixtures which accommodate the physical
notion of microstructure. Since our mixture is polarized, its behaviour is not determined

12
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solely by the deformation tensor and the volume fraction of the constituents but also by the
polarization vector; this can be intended as an independent kinematic variable; it is necessary
to determine an additional equation of balance of the forces in terms of the new variable.
In fact, the polarization vector previously introduced can be viewed as a particular physical
quantity called a morphological descriptor whose rate is power conjugated to a kind of forces
called microstructural forces; in this contest, hence, such balance can be determined within the
framework of the multifield theory (see [13]) and since the effect of the microstructural forces
can be measured in terms of power, we can use again the tool of the principle of invariance
of power. We admit that the microstructural force has a contact part and a body part, as in
classical continuum. The microstructural external power P ms

a writes

P ms
a =

∫
∂bt

Sa n · ṕa +
∫

bt

βa · ṕa, (68)

so the external power is now given by the sum of the electromechanical power (24) and the
microstructural power (68). It yields

P ext
a =

∫
∂bt

Ta n · x́a +
∫

bt

ba · x́a +
∫

bt

ρa(grad Ea) pa · x́a +
∫

bt

m̆a · x́a

+
∫

bt

ω̆a · rot x́a +
∫

∂bt

Sa n · ṕa +
∫

bt

βa · ṕa.

We apply now the same mathematical machinery used previously and we find the new balance
equations. By applying the same mathematical machinery that we used to find the equality
(26) we obtain when the microstructural power (68) is considered in the invariance of the
power

c(t) ·
[∫

∂bt

Tan +
∫

bt

ba +
∫

bt

m̆a +
∫

bt

ρa(grad Ea) pa

]

+ q(t) ·
[∫

∂bt

(xa − x0) × Tan +
∫

bt

(xa − x0) × ba

+
∫

bt

(xa − x0) × m̆a +
∫

bt

(xa − x0) × ρa(grad Ea) pa +
∫

bt

ω̆a

+
∫

bt

pa × San +
∫

bt

pa × βa +
∫

bt

pa × ρaEa

]
= 0 (69)

that has to be verified for every choice of c(t) and q(t). We are interested to manipulate the
last line in equation (69) that is the one that does not appear in equation (27). In indicial
notation we can write∫

∂bt

εijkpaj
Sakl

nl +
∫

bt

εijkpaj
βak

+
∫

bt

εijkpaj
ρaEak

= 0.

For the theorem of divergence we get the pointwise form

εijk

[
∂paj

∂xl

Sakl
+ paj

(
∂

∂xl

Sakl
+ βak

+ ρEak

)]
= 0.

The terms between round brackets cannot disappear; we define a new term (that is called
self-force) that is peculiar to complex bodies theory (see [13]). We obtain the microstructural
balance equation (the one between round braces) already obtained in the same way in [13]

div Sa + βa + ρaEa = za, (70)

and by (69), (70) and (28) we get the angular momentum

ε
(
TT

a + grad paST
a + pa ⊗ za

) = −ω̆a

13
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that coincides with [13] when ωa = 0. We find now the balance energy of the microstructured
mixture for each phase and for the mixture as a whole. The balance of energy (43) writes now∫

bt

ρaéa =
∫

∂bt

Ta n · x́a +
∫

bt

ba · x́a +
∫

bt

ρa(grad Ea) pa · x́a +
∫

bt

m̆a · x́a

+
∫

∂bt

Sa n · ṕa +
∫

bt

βa · ṕa +
∫

∂bt

qa · n +
∫

bt

ρara +
∫

bt

ĕa, (71)

and by the divergence theorem and equations (28) and (70), we have the point-wise form

ρaéa = Ta · grad x́a + Sa · grad ṕa + za · ṕa + div qa + ρara + ĕa.

If we use the equality x́a = ẋ + ua and ṕa = ṗ + (grad p) · ua we get from (71)

ρaéa = Ta · grad ẋ + div
(
qa + TT

a ua

)
+ Sa · grad ṗ + za · ṗ

+ div
(
ST

a (grad p) ua

)
+ za · (grad p) ua

+ [ρara + ba · ua + ρa(grad Ea) pa · ua] + (ĕa + m̆a · ua), (72)

and if we take into account (41) and sum over a, we obtain the global balance of the inner part
of internal energy

ρėI = T · grad ẋ + S · grad ṗ + z · ṗ+div qI + ρrI +
∑

a

[ba · ua + za · (grad p) ua

+ ρa(grad Ea) pa · ua] +
∑

a

(ĕa + m̆a · ua), (73)

where qI = ∑
a

(
qa + TT

a ua + ST
a (grad p) ua − ρaeaua

)
and ρrI = ∑

a ρara and S = ∑
a Sa .

The sum
∑

a ba · ua contains both inertial and non-inertial terms. The addition between
equations (73) and (42) provides the rate of total internal energy

ρė =
(

T −
∑

a

ρaua ⊗ ua

)
· grad ẋ + S · grad ṗ + z · ṗ

+ div q̃ + ρr̃ +
∑

a

(ĕa + m̆a · ua). (74)

We impose again equation (50) and the balance (74) transforms into

ρė =
(

T−
∑

a

ρaua ⊗ ua

)
· grad ẋ + S · grad ṗ + z · ṗ + div q̃ + ρr̃, (75)

where

q̃ = qI −
∑

a

1

2
ρau

2
aua, (76)

ρr̃ = ρrI +
∑

a

[ba · ua + za · (grad p) ua + ρa(grad Ea) pa · ua]. (77)

Equations (75)–(77) and (50) are the form that the first principle of thermodynamics assumes
for a polarized mixture with microstructure. When microstructural terms are neglected the
expressions provided by Bowen [3] are recovered. For finding the constitutive restrictions for
our microstructured continuum we should account for microstructural power in equation (58)
that changes into

ρaψ́a + ρaηaθ́ � Ta · grad x́a + Sa · grad ṕa + za · ṕa +
qa

θ
· grad θ

+ ĕa − ja · grad μ̃a + μ̃aća. (78)

14



J. Phys. A: Math. Theor. 42 (2009) 325205 L Magnarelli

We get the same results as in (63a) but (63b) changes into

ρa

∂ψa

∂wa

= Sa, ρa

∂ψa

∂pa

= za

which is the new microstructural forces introduced in this section.

6. Conclusion

In this paper, we have derived a model of a polarized mixture. Differently from Samohyl [19],
who proved Roubicek’s model [1] after various simplifications and using a Hittorf approach,
we have used the principle of invariance of the power to deduce the balance laws for each
phase and for the mixture as a whole. Differently from them, we have considered the ionic
constituents not as phases of the mixture, but as tracers and we have derived via the Coleman
and Noll procedure that their diffusion is governed by the Nernst–Planck equation. Such a
result is often postulated and deduced by phenomenological considerations and in some way
enforced in the mathematical model. Instead, in our framework, it arises naturally. Roubicek’s
model can be retrieved imposing the polarization vector identically null and considering the
mixture (as a whole) as a Newtonian fluid. The model has been improved in the final section
where microstructural effects have been considered in the framework of the multifield theory.
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